Tagarchief: stikstof

Koolstofdatering

Standaard

Categorie: religie

 

 

 

 

.

Wat is de koolstofdatering en hoe werkt het?

 

Hoe werkt koolstofdatering, ook wel C14-datering genoemd? Koolstof (C14) is een natuurlijk element dat in overvloed voorkomt in de atmosfeer, in de aarde, in de oceanen en in elk levend wezen. C12 is veruit het meest voorkomende isotoop, terwijl slechts één op elke triljoen koolstofatomen een C14-atoom is. C14 wordt in de hogere atmosfeer geproduceerd wanneer stikstof-14 (N14) onder de invloed van kosmische straling wordt veranderd; een proton wordt door een neutron vervangen en het netto resultaat is een transformatie van het stikstofatoom tot een koolstofisotoop.

Het nieuwe isotoop wordt “radioactieve koolstof” genoemd omdat het, zoals de naam zegt, radioactief is (maar ongevaarlijk). C14 is instabiel en zal daarom na verloop van tijd spontaan weer vervallen tot N14. Het duurt ongeveer 5730 jaar voordat de helft van een bepaalde hoeveelheid radioactieve koolstof tot stikstof is vervallen. Het duurt vervolgens weer 5730 jaar voordat de helft van de resterende koolstof is vervallen, en dan weer 5730 voor de helft van dat restant, enzovoorts. De tijdsduur die nodig is om de helft van een hoeveelheid koolstof te laten vervallen wordt de “halfwaardetijd” genoemd.

Radioactieve koolstof oxideert (dat wil zeggen, verbindt zich met zuurstof) en komt de biosfeer binnen via natuurlijke processen zoals ademhaling en voeding. Planten en dieren nemen zowel het overvloedige C-12 en het veel zeldzamer C-14 in hun weefsel op, in ongeveer dezelfde verhouding als de C14/C12 verhouding in de atmosfeer. Wanneer een dier sterft, wordt er geen radioactieve koolstof meer opgenomen, maar de C14 die reeds in het lichaam aanwezig was blijft vervallen tot stikstof.

Als we dus de resten van een dood wezen vinden waarin de verhouding tussen C12 en C14 de helft is van wat het zou moeten zijn (dat wil zeggen één C14 atoom op elke twee triljoen C12 atomen in plaats van één op elke triljoen), dan kunnen we aannemen dat het dier al ongeveer 5730 jaar dood is (omdat de helft van de radioactieve koolstof ontbreekt en het ongeveer 5730 jaar duurt voordat de helft van de radioactieve koolstof tot stikstof vervalt). Als de verhouding een kwart is van wat het zou moeten zijn (één op vier triljoen), dan kunnen we aannemen dat het dier al zo’n 11.460 jaar dood is (twee keer de halfwaardetijd).

Na tien keer de halfwaardetijd is de resterende hoeveelheid radioactieve koolstof niet meer meetbaar. Deze techniek is daarom niet bruikbaar voor de datering van dieren die meer dan 60.000 jaar geleden stierven. Een andere beperking is dat deze techniek alleen toegepast kan worden op organisch materiaal zoals botten, vlees of hout. De techniek kan niet gebruikt worden om gesteente rechtstreeks te dateren.

 

 

 Het uitgangspunt van de koolstofdatering

 

Koolstofdatering is een dateringsmethode die afhankelijk is van de volgende drie zaken:

  • De snelheid waarmee het onstabiele radioactieve C14 tot de stabiele niet-radioactieve N14 isotoop vervalt,
  • De verhouding tussen C12 en C14 die in het monster wordt aangetroffen,
  • En de verhouding tussen C12 en C14 die in de atmosfeer wordt aangetroffen ten tijde van de dood van het monster.

 

 

 De controverse van de koolstofdatering

 

Koolstofdatering is controversieel om verschillende redenen. Ten eerste is de methode afhankelijk van enkele twijfelachtige aannames. We moeten bijvoorbeeld aannemen dat de vervalsnelheid (dat wil zeggen, de halfwaardetijd van 5730 jaar) in het verleden altijd constant is gebleven. Maar dat kan niet gemeten worden. Er bestaat zelfs krachtig bewijs voor een sterke toename van de radioactieve vervalsnelheid in het verleden.1 We moeten bovendien aannemen dat de verhouding tussen C12 en C14 in de atmosfeer in het verleden altijd constant is gebleven (zodat we kunnen weten wat deze verhouding was op het moment van de dood van het monster).

En toch weten we dat “radioactieve koolstof 28-37% sneller wordt gevormd dan het vervalt”2. Dat betekent dat er nog geen evenwicht is bereikt; deze verhouding is vandaag de dag dus groter dan in het niet-waarneembare verleden. We weten ook dat deze verhouding drastisch steeg ten tijde van de industriële revolutie, als gevolg van de drastische toename van CO2 dat door de fabrieken werd geproduceerd. Deze door de mens veroorzaakte fluctuatie was geen natuurlijk verschijnsel, maar het toont aan dat fluctuaties mogelijk zijn en dat ook natuurlijke verstoringen deze verhouding sterk zouden kunnen beïnvloeden.

Vulkanen stoten CO2 uit, wat zou kunnen leiden tot een afname van deze verhouding. Dieren die in een periode van hoge vulkanische activiteit leefden en stierven, zouden ouder lijken dan ze werkelijk waren als we hun leeftijd met deze techniek zouden bepalen. De verhouding kan verder worden beïnvloed door de productiesnelheid van C14 in de atmosfeer, die op zijn beurt weer wordt beïnvloed door de hoeveelheid kosmische straling die de atmosfeer van de aarde binnendringt. En deze hoeveelheid straling is zelf weer afhankelijk van factoren zoals het magnetische veld van de aarde (dat kosmische straling kan doen afbuigen).

Nauwkeurige metingen die over de afgelopen 140 jaar hebben plaatsgevonden, hebben aangetoond dat de sterkte van het magnetische veld van de aarde gestaag afneemt. Dit betekent dat er een gestage toename van de productie van radioactieve koolstof heeft plaatsgevonden (wat de verhouding zou doen toenemen).

Tenslotte kunnen we zeggen dat deze dateringsmethode controversieel is omdat de data die hiermee bepaald worden vaak gruwelijk inconsequent zijn. Bijvoorbeeld: “Eén lichaamsdeel van Dima [een beroemde babymammoet die in 1977 werd ontdekt] was 40.000 RCY [radioactieve koolstofjaren] oud, maar een ander was 26.000 RCY, en ‘hout dat in de onmiddellijke omgeving van het kadaver werd gevonden’ bleek 9000-10.000 RCY jaar oud te zijn.” (Walt Brown, In the Beginning, oftewel “In het begin”, 2001, p. 176)

 

  1. D. R. Humphreys, J. R. Baumgardner, S. A. Austin, en A. A., Snelling, “Helium diffusion rates support accelerated nuclear decay”, oftewel Helium diffusiesnelheden ondersteunen een versneld nucleair verval, in Proceedings of the Fifth International Conference on Creationism, R. Ivey, Ed., Creation Science Fellowship, Pittsburgh, PA, 2003. Zie ook: Walt Brown, In the Beginning, oftewel In Het Begin, 2001, p. 75, onder “Constant Verval?”
  2. Brown, Idem, p. 246.

 

 

 

 

Koolstofdatering – Dendrochronologie

 

Om de C14-datering te kunnen gebruiken , moeten we – zoals we reeds gezien hebben – weten wat de verhouding tussen C12 en C14 is op het moment van de dood van het monster. Als deze verhouding in het (niet-waarneembare) verleden gefluctueerd heeft (en we kunnen er zeker van zijn dat dit het geval is geweest), hoe kunnen we dan bepalen wat deze verhouding was tijdens het leven van een organisch proefdier, dat leefde en stierf vóórdat we deze verhouding konden meten?

Voorstanders van de C14-dateringsmethode hebben zich tot de “dendrochronologie” (“jaarringenonderzoek” genoemd) gewend om hun tijdschaal te kalibreren (door geschatte fluctuaties van de verhouding tussen C12 en C14 hierin te verwerken). Wanneer de leeftijd van een stuk hout op twee manieren bepaald wordt, enerzijds met koolstofdatering en anderzijds door de jaarringen te tellen, kunnen wetenschappers een tabel opstellen waarmee zij de twijfelachtige C14-jaren naar werkelijke kalenderjaren kunnen omzetten.

Dit werkt als volgt: wetenschappers beginnen met een levende boom of een proefstuk van dood hout waarvan de leeftijd met betrouwbare methoden kan worden vastgesteld. Vervolgens gaan zij op zoek naar stukken dood hout die ouder zijn dan dat eerste proefstuk, maar met overeenkomstige, overlappende jaarringen (jaarringen kunnen onder invloed van verschillende omgevingsfactoren een grote variatie in breedte vertonen en zo een patroon vormen waarmee we proefstukken uit dezelfde omgeving kunnen vergelijken). De wetenschappers gaan vervolgens op zoek naar nog meer stukken dood hout die met dit tweede proefstuk overlappen, enzovoorts.

En tenslotte worden alle jaarringen geteld, waarbij de overlappende patronen worden gebruikt om alle stukken met elkaar te verbinden. Op deze manier wordt uiteindelijk de leeftijd van het oudste stuk hout bepaald. Dit wordt een “lange chronologie” genoemd. Het oudste stuk hout wordt dan ook gedateerd met de koolstofdateringsmethode. Door de twee data te vergelijken, kunnen wetenschappers de noodzakelijke bijstellingen in hun berekeningen maken.

Helaas heeft het gebruik van jaarringenonderzoek als kalibratiemiddel van de C14-dateringsmethode  zijn eigen tekortkomingen. Dr Walt Brown legt dit uit: “…verbanden worden gelegd op basis van het oordeel van een jaarringspecialist. Soms worden ‘ontbrekende’ ringen toegevoegd.1… Eenvoudige statistische berekeningen zouden kunnen vaststellen in welke mate het dozijn overlappende jaarringen werkelijk met elkaar overeenkomen. Maar jaarringspecialisten weigerden om hun bevindingen aan dergelijk statistisch onderzoek te onderwerpen en wilden hun data niet vrijgeven zodat anderen deze statistische proeven zouden kunnen uitvoeren” (Walt Brown, In the Beginning,, oftewel “In het begin”, 2001, p. 246).

Deze weigering om medewerking te verlenen aan verder onderzoek is reden genoeg voor scepticisme, vooral in het licht van de duidelijke cirkelredenering die door de onderzoekers wordt toegepast. “De leeftijd van houten proefstukken die voor ‘lange chronologieën’ worden gebruikt, wordt eerst met behulp van koolstofdatering bepaald. Als die leeftijd hoog genoeg genoeg is (mogelijk door een verkeerde aflezing), dan kijken jaarringspecialisten naar de breedte van de ringen om te kijken of de ‘lange chronologie’ verder kan worden doorgetrokken. Deze chronologie wordt vervolgens gebruikt als garantie dat de koolstofdatering gekalibreerd is met een ononderbroken reeks jaarringen.”

[Deze praktijk wordt ook beschreven door Henry N. Michael en Elizabeth K. Ralph, “Quickee” 14C Dates, Radiocarbon, Vol. 23 No. 1, 1981, pp. 165-166].” (Brown, idem, p. 246; Zie ook Gerald E. Aardsma, “Myths Regarding Radiocarbon Dating”, oftewel Mythen over de koolstofdateringImpact, No. 189, maart 1989)

 

 

 

 

 

Wat zeggen de experts?

 

Robert Lee gaf in zijn artikel “Radiocarbon, Ages in Error” (oftewel Radioactieve koolstof; verkeerde leeftijden) in het Anthropological Journal of Canada een samenvatting van de controverse rond de koolstofdatering: “De problemen van de koolstofdateringsmethode zijn onmiskenbaar diepgaand en ernstig. Ondanks 35 jaar technische verfijning en toenemend begrip worden de onderliggende aannames  sterk in twijfel getrokken. Men waarschuwt dat de radioactieve koolstofdatering zich binnenkort wel eens in een crisistoestand zou kunnen bevinden.

Een verder gebruik van de methode is afhankelijk van een benadering die feitelijk stelt: ‘we lossen problemen wel op wanneer we ze tegenkomen’; een benadering die open staat voor afwijkingen, gesleutel met factoren, en kalibratie wanneer het ook maar mogelijk is. Het is dan ook niet verbazingwekkend dat maar liefst de helft van de verkregen data wordt afgewezen. Maar er moet toch zeker wel verwondering bestaan over het feit dat de andere helft wél aanvaard wordt. Maar ongeacht hoe ‘bruikbaar’ de radioactieve koolstofmethode is, ze is nog steeds niet in staat om nauwkeurige en betrouwbare resultaten te geven.

Er bestaan aanzienlijke discrepanties, de chronologie is ongelijkmatig en relatief, en de aanvaarde data zijn eigenlijk geselecteerde data” (Robert E. Lee, “Radiocarbon, Ages in Error”, oftewel Radioactieve koolstof; verkeerde leeftijdenAnthropological Journal of Canada, Vol. 19, No.3, 1981, pp. 9, 29).

 

  1. Zie Harold S. Gladwin, “Dendrochronology, Radiocarbon and Bristlecones,” Anthropological Journal of Canada, Vol. 14, No. 4, 1976, pp. 2-7.)

 

 

 

 

 

preview en aankoop boek “De Openbaring “: 

http://nl.blurb.com/books/5378870?ce=blurb_ew&utm_source=widget

 

 

 

 

De betrouwbaarheid van de C-14 dateringsmethode

Standaard

categorie : religie

 

 

 

 

De betrouwbaarheid van de C-14 dateringsmethode

 

 

Eén van de meest gehoorde argumenten tegen een jonge aarde is dat radiometrische dateringsmethoden bewijzen dat de aarde wel miljoenen jaren oud moet zijn. Het vaakst wordt de C-14 dateringsmethode genoemd. Maar dat is nog steeds aanzienlijk meer dan de 6000 jaar waar Bijbelgetrouwe creationisten in geloven, dus hoe zit dat?

 

 

C14work1_L

 

 

 

Hoe werkt de C-14 dateringsmethode?

 

Van de meeste elementen bestaan meerdere versies, isotopen genoemd. Van het koolstofatoom bestaan vijf isotopen. Het meest voorkomende ‘normale’ koolstofisotoop is C-12 (of 12C). Dat heeft een atoommassa van 12, omdat de kern 6 protonen en 6 neutronen bevat. Dit is een stabiele isotoop, dat wil zeggen dat het niet vervalt. Een andere isotoop is C-14 (of koolstof-14, of 14C).

Dat is iets zwaarder, omdat de kern niet 6 maar 8 neutronen bevat. Omdat het 6 protonen en 6 elektronen heeft, gedraagt het zich echter precies hetzelfde als de andere koolstofisotopen. Het enige verschil (naast dat het iets zwaarder is) is dat het radioactief is en dus langzaam vervalt. Het vervalt met een halfwaardetijd van 5730 jaar, dus na die periode is er nog de helft van het oorspronkelijke C-14 over.

Koolstof-14 wordt hoog in de atmosfeer door kosmische straling gevormd uit stikstof-14. Zo ontstaat er in de atmosfeer een bepaalde verhouding tussen het radioactieve C-14 en het ‘gewone’ C-12. Dit noemen we de C-14/C verhouding. Momenteel is één op de 1,17 biljoen koolstofatomen in de atmosfeer een koolstof-14 atoom. Planten, die CO2 (en dus koolstofatomen) opnemen uit de lucht, bevatten dezelfde C-14/C ratio als de atmosfeer, en hetzelfde geldt voor dieren, die immers planten eten.

Wanneer het organisme sterft neemt het geen koolstof meer op. Maar het radioactieve koolstof vervalt langzaam terug tot stikstof. Dus verandert langzaam maar zeker de C-14/C verhouding in het stoffelijk overschot van dit organisme. Hoe langer geleden het organisme is gestorven, hoe lager de C-14/C ratio. Wanneer men een organisch sample test met de koolstofdateringsmethode, denkt men uit de waargenomen C-14/C verhouding te kunnen berekenen wanneer het organisme is doodgegaan.

Op het moment dat een organisme sterft, houdt de koolstofflux door zijn lichaam op. Het C-14 vervalt langzaam maar zeker, waardoor de C-14/C verhouding in het stoffelijk overschot van dit organisme afneemt. We weten de snelheid waarmee C-14 vervalt (de hoeveelheid halveert iedere 5730 jaar). Als we weten wat de oorspronkelijke C-14/C verhouding ten tijde van overlijden was, kunnen we vanuit de huidige verhouding berekenen hoe lang geleden het organisme overleed.

 

 

 

De C-14/C verhouding in de atmosfeer

 

Zoals bij alle dateringsmethoden moeten er ook bij deze ouderdomsbepaling een aantal aannames worden gedaan om tot een ‘leeftijd’ van iets te kunnen komen. Iedere dateringsmethode maakt gebruik van de volgende drie uitgangspunten:

  • Een constant proces. Bij radiometrische dateringsmethoden houdt dat in dat men ervan uitgaat dat het verval altijd met dezelfde snelheid heeft plaatsgevonden. Dus dat C-14 altijd een halveringstijd van 5730 jaar heeft gehad.

 

  • Een gesloten systeem. Er mag in de tussenliggende jaren geen uitwisseling hebben plaatsgevonden tussen de relevante stoffen (in dit geval koolstof) in het sample en stoffen uit de omgeving.

 

  • Een bekende beginsituatie. Er moet een aanname worden gedaan over de verhoudingen of hoeveelheden zoals ze in het begin waren. In het geval van de C-14 methode gaat men er vanuit dat de C-14/C verhouding in de atmosfeer altijd ongeveer gelijk is gebleven. Men neemt dus aan dat de C-14/C verhouding in de atmosfeer 5000 jaar geleden niet heel erg anders was dan tegenwoordig.

 

Vooral over de laatste aanname kan veel gezegd worden. Men kan er bijvoorbeeld niet zonder meer van uitgaan dat de C-14 in de atmosfeer homogeen verdeelt is over de hele biosfeer. Er zijn gevallen bekend waarbij organismen in een C-14-arm milieu leven en dus nog vóór ze sterven een lagere hoeveelheid C-14 bevatten. Wanneer men uitgaat van een beginsituatie waarbij de C-14/C verhouding gelijk is aan die in de atmosfeer, zullen deze organismen te oud gedateerd worden.

Riggs rapporteerde een geval waarbij een levende slak een C-14-gehalte had van 3,3 +/- 0,2 procent van het atmosferische gehalte, wat normaal gesproken een ‘leeftijd’ van 27.000 jaar impliceert. Wakefield rapporteerde gevallen waarbij recentelijk gestorven zeehonden C-14 ‘leeftijden’ hadden van 615 en 1.300 jaar. Dit soort gevallen worden veroorzaakt door het zogenaamde ‘reservoir effect’, waarbij organismen ‘oud’ koolstof binnen krijgen vanuit reservoirs (diep zeewater, of kalksteen) met een lage C-14/C verhouding.

Dit illustreert hoe belangrijk de beginsituatie is voor de betrouwbaarheid van de methode. Als hier de onjuiste aanname gedaan wordt, rolt er een compleet verkeerde leeftijd uit. En zoals zo vaak bepaalt het paradigma ( zienswijze,model ) welke aannames er gedaan worden.

Binnen het evolutionistische paradigma is het logisch om ervan uit te gaan dat de verhouding tussen gewoon koolstof en radioactief koolstof in de atmosfeer de afgelopen honderdduizend jaar ongeveer gelijk is gebleven. Maar binnen het scheppings/zondvloedparadigma moeten hele andere aannames worden gedaan.

 

 

Noahs%20Ark2

 

 

 

Een lage C-14/C verhouding vóór de zondvloed

 

Zoals gezegd ontstaat C-14 hoog in de atmosfeer door secundaire kosmische straling, en vervalt het weer door radioactief verval. De totale hoeveelheid C-14 is in evenwicht wanneer er per tijdseenheid evenveel C-14 wordt aangemaakt als er vervalt. Dit is een stabiel evenwicht , d.w.z. de totale hoeveelheid C-14 neigt toe of af te nemen totdat het evenwicht is bereikt. De hoeveelheid C-14 atomen is onafhankelijk van de hoeveelheid C-12, de C-14/C ratio is dat natuurlijk niet.

Als de totale hoeveelheid C-14 vóór de zondvloed in evenwicht was, zal deze hoeveelheid niet extreem verschillend zijn geweest van de hoeveelheid C-14 die zich tegenwoordig in de biosfeer bevindt. We weten echter dat de totale hoeveelheid C-12 voor de zondvloed wel veel groter was dan tegenwoordig. Dit weten we omdat we in de aardlagen dikke lagen steenkool vinden, die uit bijna alleen maar koolstof bestaan.

Al het steenkool van de hele wereld vormt een enorme hoeveelheid koolstof: de totale hoeveelheid koolstof in steenkoollagen is ruim 100 maal zo groot dan de totale hoeveelheid koolstof in de hele huidige biosfeer! Deze steenkoollagen zijn overblijfselen van plantenmateriaal dat tijdens de zondvloed bedolven is. Voor de zondvloed moet deze enorme hoeveelheid koolstof zich dus in de biosfeer bevonden hebben.

Aangezien de hoeveelheid C-14 voor de vloed niet heel erg anders was dan tegenwoordig, maar er wel ruim 100 keer zoveel C-12 was, moet de C-14/C verhouding in de biosfeer voor de zondvloed dus véél lager hebben gelegen. Dit betekent dat organismen die voor de zondvloed leefden reeds tijdens hun leven een hele lage C-14/C verhouding hadden.

Als we deze organismen zouden datering met de koolstofdateringsmethoden, zouden er dus véél te hoge leeftijden uitkomen, net zoals slak en de zeehonden die hierboven genoemd werden. Binnen het scheppingsmodel moeten er dus hele andere aannames worden gedaan over de C-14/C verhoudingen in het verleden. En het is logisch dat evolutionistische onderzoekers, die hier geen rekening mee houden wanneer ze dateringen uitvoeren, op leeftijden van meer dan 6000 jaar uitkomen.

 

 

 

 

 

De opbouw van een nieuw C-14/C evenwicht na de zondvloed

 

We kunnen dus verklaren hoe het komt dat organismen die voor de zondvloed leefden veel ouder lijken te zijn wanneer ze met de koolstofdateringsmethode gedateerd worden. Maar hetzelfde geldt voor de organismen die in de eerste eeuwen na de zondvloed leefden.

Tijdens de zondvloed werd het merendeel van het koolstof dus bedolven. Dat geldt dus ook voor het merendeel van het C-14 dat zich immers met het gewone koolstof vermengd had. Vlak na de zondvloed was de hoeveelheid C-14 in de biosfeer dus kleiner dan de evenwichtshoeveelheid. Dus begon de hoeveelheid C-14 toe te nemen, totdat het evenwicht opnieuw bereikt werd.

Dat betekent dat de C-14/C ratio na de zondvloed langzaam begon te stijgen, totdat de huidige verhouding werd bereikt. Maar voordat het nieuwe evenwicht bereikt werd, leefden organismen nog in een omgeving met relatief weinig C-14, waardoor ook de organismen die de eerste eeuwen na de zondvloed leefden veel ouder lijken te zijn dan in werkelijkheid.

De C-14/C verhouding in de biosfeer gedurende de geschiedenis. De grijze lijn geeft de evolutionistische aanname weer dat de C-14/C verhouding in het verleden altijd ongeveer hetzelfde was als tegenwoordig (met variaties die hier niet weergegeven zijn). De rode lijn geeft de aanname weer die we moeten doen binnen het scheppingsverhaal.

Het is duidelijk dat een organisme dat voor of vlak na de zondvloed leefde een hele lage C-14 concentratie had. Een evolutionistische onderzoeker die deze lage C-14/C ratio waarneemt, zou onterecht concluderen dat deze lage waarde het gevolg is van tienduizenden jaren radioactief verval van C-14, terwijl het in feite gewoon het gevolg was van een lage C-14/C verhouding in de biosfeer van die tijd.

 

 

 

Consistent gebruik van de radiometrische dateringsmethoden binnen het evolutieraamwerk?

 

Hoe komt het dat de meeste gepubliceerde dateringen mooi passen binnen het evolutionistische plaatje? Het is niet bekend in hoeverre de gepubliceerde dateringen een representatieve afspiegeling zijn van de vele dateringen die in feite worden gedaan. Wanneer wetenschappers hun onderzoeksobjecten laten dateren, hebben ze al een bepaalde verwachting over de leeftijd die deze zullen hebben. De laboratoria die de dateringen uitvoeren willen deze verwachtingen van tevoren weten, en dit speelt een rol bij de uitslag.

Vallen de dateringen anders uit dan verwacht, dan zijn er allerlei ‘redenen’ te bedenken waarom de uitslagen niet kloppen (bijvoorbeeld het reservoir effect, of dat er contaminatie heeft plaatsgevonden). Uiteindelijk worden bijna alleen ‘kloppende’ dateringen gepubliceerd.

Af en toe wordt het selectief omgaan met dateringen door de wetenschappers zelf toegegeven. Neem bijvoorbeeld deze uitspraak van R. L. Kauger (in een paper waarin kalium-argon dateringen worden besproken, maar het gaat om de mentaliteit, en dat is dus op alle dateringsmethoden toepasbaar):

In general, dates in the ‘correct ball park’ are assumed to be correct and are published, but those in disagreement with other data are seldom published nor are discrepancies fully explained. De gepubliceerde dateringen zijn dus in feite geselecteerde dateringen, hetgeen het lastig maakt te bepalen hoe vaak dateringsmethoden nou eigenlijk ‘goede’ dateringen opleveren.

 

 

Conclusie

 

De betrouwbaarheid van de C-14 dateringsmethode is zo goed als de betrouwbaarheid van de aannames. Aannames die binnen het evolutionistische raamwerk logisch zijn (de C-14/C verhouding is altijd ongeveer gelijk gebleven), leveren hoge leeftijden op. Aannames die binnen het creationistische raamwerk logisch zijn (de C-14/C verhouding moet vroeger veel lager hebben gelegen), leveren veel lagere leeftijden op. Een conclusie die alleen geldig is binnen het ene paradigma, vormt geen argument tegen het andere paradigma, dus de C-14 dateringsmethode levert geen doorslaggevend argument tegen een jonge aarde.

 

 

 

Referenties

 

  1. Riggs, A. C., 1984, Major carbon-14 deficiency in modern snail shells from southern Nevada springs, Science, 224, pp. 58-61 2. Wakefield, Dort, Jr., 1971, Mummified seals of southern Victoria Land, Antarctic Journal, vol. 6, no. 5, pp. 210-211 3. R. L. Kauger, 1977, K-Ar ages of biotites from tuffs in Eocene rocks of the Green River, Washakie, and Uinta basins, Utah, Wyoming, and Colorado, Rocky Mountain Geology, vol. 15, no. 1, p. 17-41

 

 

 

3d-gouden-pijl-5271528

 

 

preview en aankoop boek “De Openbaring “: 

http://nl.blurb.com/books/5378870?ce=blurb_ew&utm_source=widget

 

 

 JOHN ASTRIA

JOHN ASTRIA